

Build a web app using Python + Django!
Written for non-programmers.

https://hellowebbooks.com/learn-django

Learn web design fundamentals and
shortcuts, aimed at non-designers!

https://hellowebbooks.com/learn-design

https://hellowebbooks.com/learn-django
https://hellowebbooks.com/learn-design
http://twitter.com/hellowebbooks
http://twitter.com/limedaring
http://hellowebbooks.com

L e a r n C o m m a n d L i n e 3

Hey friends!
My name is Tracy Osborn — I’m the author of Hello Web
Books, beginner-friendly videos and books teaching beginner
web concepts (https://hellowebbooks.com).

In 2010 I taught myself how to code, and my world just opened
up. I went from only using what other people built for the
computer, to being able to build my own computer widgets
and products and even a full-fledged startup. I love being able
to code and feel like I can speak to computers to tell them
what to do.

And, for the learn-to-code journey, learning the “command
line” is the first step. It’s a really scary step — no helpful graph-
ics or buttons, just a blank space where you can type in com-
mands, and who knows what’s going on in the background?

BUT. When you learn just enough to work with the command
line, which means you can start working with programming
languages like Python, believe me: It’s not as scary as it might
seem.

(This booklet was originally created as an addition to Hello
Web App, my course/book teaching beginner web app de-
velopment using Python and Django. Want to learn how to
build a web app, maybe an Instagram clone or your own blog
system? Check out Hello Web App! https://hellowebbooks.com/
learn-django)

What is the command line?
We’re used to having programs for everything we want to do
on the computer. For example, our Finder window, where we
can navigate our hard drive, create new files and folders, delete
files, and navigate every file we have stored in our system.

https://hellowebbooks.com
https://hellowebbooks.com/learn-django
https://hellowebbooks.com/learn-django

H E L L O W E B A P P4

The Finder window, the user interface we use to explore the files on
our hard-drive.

We can do the same thing in the command line — navigate
our system, see our files, update or change our files — we just
won’t have a graphical interface (graphical means shiny but-
tons and dropdowns) on top of what we’re doing, and instead
of clicking, we have to type out what we want. The default pro-
gram on the Mac is “Terminal” — open it up and check it out.

The command line on Mac. Just a blank space to type in.

And yeah, that sucks, we got to remember what to type and
what commands we can use. No worries, you don’t need to
memorize everything! This booklet will teach the easy
basics (with a cheat sheet at the end) and you can slowly
pick up other commands as you need them during your
programming journey.

L e a r n C o m m a n d L i n e 5

What is Unix?
You might see other guides teaching the command line men-
tioning “Unix” a lot. Unix is, essentially, a family of operating
systems, which Mac and Linux are a part of. A lot of guides call
the command line, the “Unix command line,” because Mac,
Linux, and other computers share the same set of commands
to talk to their computer (so hey, everything you learn here can
be used if you ever use Linux!)

The exception is Windows, who decided to do their own slight-
ly different thing. Thankfully, for Windows users, there are a
lot of utilities out there that allow you to use the Unix com-
mands on a Windows computer. By and large, programming
tutorials and tools assume that you can use Unix commands,
so Windows users install additional utilities on the computer.

I’m not going to mention Unix from here on out, but just
wanted to give you a heads-up in case you get confused by
other tutorials!

How is this tutorial different?
I am going to gloss over most technical details and summarize
things into understandable, dumbed-down, explanations. Not
saying that you’re dumb! A lot of other tutorials get into the
mindset of, “Well let’s explain everything that is going on! The
full, complete, detailed, confusing explanation so you know exact-
ly how things work!”

If you’re like me, your mind start glazing over when an
explanation gets way too wordy. I don’t want to do that here.
And to those who might be reading this guide and thinking,
“Well, that’s not technically exactly correct…” — I’m not going
for technically exactly. I’m going for just enough so you (dear
reader) feel comfortable jumping in.

H E L L O W E B A P P6

Let’s start playing!

The blank, scary command line

Your username and computer name, and then $ shows you where
you start typing.

Back to this blank page with all its hidden power
and possibilities!

In the example above, you see my username “limedaring”, and
my computer name, “Orion,” so what you see will be different
and will show your own personal values.

The $ is the prompt. In a lot of programming tutorials, you
might see commands that you need to type into your com-
mand line looking like this:

$ yourcommandtotypein

These tutorials use that $ to show you that you’re in the com-
mand line and this is the place where you’ll be typing, ignoring
your own personal username and computer name.

Listing files in our current directory
ls

The first command we’ll learn is ls, which is short for “list.”
You will notice that commands are shortened to be as short as
possible, which’ll be helpful when you’re comfortable using

L e a r n C o m m a n d L i n e 7

these commands and are typing them in over and over. Less
characters to type!

Type in ls and press enter, and see what happens:

Oh hey, that might look familiar! Open up a new Finder win-
dow and click on your username in the left sidebar. It’s all the
same files/folders!

The command line always starts us in our user directory. And
just like how you can click on a folder in Finder to see what’s in
the folder, you can navigate in and out of folders (which we’ll
refer as “directories” here on out) using your command line.

Changing directories
cd

In Finder, I can click on “Music” see to see the contents of that
folder. And in the command line, I can use the command cd
(“change directory”) to “open” up that directory.

H E L L O W E B A P P8

Clicked on Music, I can see the contents of the folder.

I cd’d into Music. Compared to Finder. Looks kind of boring
compared to Finder!

In the command line screenshot, I cd’d into Music. Use your
imagination — you just stepped into the directory. The com-
mand line updated to show that you’re currently “in” the
Music directory. And here, you can use ls to see the directory’s
contents, just like in Finder.

There’s that iTunes folder!

In your Finder window, you could click around anywhere and
see the contents of those folders. Finder is, essentially, cd-ing
and ls-ing behind the scenes, and displaying the results in a
much prettier graphical representation, rather than just using
text.

L e a r n C o m m a n d L i n e 9

We can use cd and ls again to check out the iTunes directory:

Wait, we’re only stepping forward. How can we go back to
where we were before?

Changing directories to go
back to where we came
cd ..

In the command line, we can’t just click and go anywhere. It’s
not even obvious how to go back to our main user directory!
For that, we’ll use cd .. to step back:

We can even chain the dots with a slash to step back
multiple steps:

Hey, we’re back in that home directory! I like to use ls to
double check where I am by checking out the contents of the
directory.

H E L L O W E B A P P10

Go back too much? Use ls to see what’s in the directory you’re
in, and then use cd to head back to where you want to go:

We went “back” too far, now we’re in the directory that contains our
main user directory.

cd into your user directory (using your own username) to get back
into your main home directory.

Fun fact! You can cd into any folder that you want from Finder
by dragging the folder into the command line! This one is a
little bit hard to illustrate. You just type cd into your command
line (don’t forget a space after `cd`), then click and hold on a
folder in your Finder, and drag it over to where you would type
the destination. Your computer will put the path to that folder
into your command line for easy cding!

 Drag that folder into your command line input area to get the path!

L e a r n C o m m a n d L i n e 11

Making, moving, and
deleting files
Here’s where things start to get fun. We can use the command
line to create, move, and delete files on our hard drive!

Creating files
touch

touch will allow you to create files from nothing. Just add the
name and type of file you want after the touch command.

Let’s make a new file, hello.txt. Wherever you want (perhaps in
your home directory), type touch hello.txt.

There isn’t going to be any success message or anything, so do
ls to see the contents of the directory that you’re in to confirm
that the file was made. Tada!

And you can see the file in Finder as well:

Maybe we don’t want it in the home directory. Instead of click-
ing/dragging it in Finder, let’s move it to another directory in
the command line.

H E L L O W E B A P P12

Moving files
mv

The command to move is mv, which looks obvious enough.
There are a few other things we need to add to the command
so the computer knows what file you want to move and where
you want to move it.

To move the file into, say, the Music folder in my home folder, I
would type mv NAMEOFFILE WHERETOMOVEIT — so, mv hello.txt
Music to move the hello.txt file into the Music folder:

Note that, again, you won’t get a success message or anything
reassuring, so you can ls on the directory that you’re on to
confirm that it disappeared, then cd into the directory you
moved your file into and ls again to confirm that the file now
appears in this new directory:

The ../ thing we learned about changing directories back-
wards, also works to move the file back up a directory too:

Next, let’s learn how to make copies from the command line.

L e a r n C o m m a n d L i n e 13

Copying files
cp

Another command that looks just like what it does! To copy,
you do cp NAMEOFFILE NEWNAMEOFCOPIEDFILE. So to copy our
hello.txt and name the copied file, goodbye.txt, we would run
this command: cp hello.txt goodbye.txt

Remember, no response usually means success! ls the files in your
directory to confirm that the new file has appeared.

(FYI, if you’re looking to copy directories, not individual files,
hold your horses — we’ll get to that in a bit!)

Kind of silly to have two empty files, right? Let’s learn how to
delete files.

Deleting files
rm

This part is kind of understandably scary. When you delete
files using the command line, there is no Trash Can or Re-
cycling Bin for them to live in that you can use to reverse an
accidental deletion. They’re just gone (eep).

(This is where a system like git, a version control system to
track changes in files, would comes in handy. It’s highly recom-
mended to use with any programming projects so you can save

H E L L O W E B A P P14

updates and restore from backup if you need to. Stay tuned for
a guide for how to work with git!)

We know our goodbye.txt file is useless, since it’s a copy of our
original file (and empty to boot). Let’s remove it by using rm
FILENAME (so, rm goodbye.txt):

Again, no success message, so we’ll check the directories files to
confirm that goodbye.txt disappeared.

But I’m tired of typing
already!
This whole time I’ve been having you type everything out
(sorry!) There are some nifty autocomplete and other tools
you can use to save yourself time when typing commands (or,
even better than saving time, preventing typos by
using autocomplete.)

Tab to autocomplete
When you’re typing a command that involves a file in your
current directory (like moving a file from your current direc-
tory into another), the command line can auto-complete your
file name.

L e a r n C o m m a n d L i n e 15

Try it out for moving a file with mv. Remember, the full com-
mand is mv FILENAME WHERETOMOVE and both of those bits after
mv can be autocompleted.

If it doesn’t autocomplete (and makes that sad “doot” default
sound if you have your speakers on), means that autocomplete
doesn’t see any filenames that start with the letters you’ve
typed so far, so it couldn’t find the file or the location you were
specified.

This is super handy when you’re working with files with long
names! After you work with it a bit, tabbing to autocomplete
your command line commands will become second nature.

(Note: Maybe you typed one character and pressed tab to
autocomplete it, and you just get an another “doot” from your
computer and no autocompletion. That usually means there
are multiple files that match what you’re autocompleting, so
you need to type a bit more until you have enough characters
that autocomplete can find the exact file you’re looking for!)

Pressing up to access previous commands
If you find yourself typing the same command into the
command line over and over (perhaps, down the road, you’re
running a script you wrote over and over), you can press “up”
in the command line to access your previous commands! Hit
“enter” after you’ve found the command you’d like to rerun
and it’ll execute. Pretty handy time saver.

Intermediate command line
utilities

What is sudo?
You might have seen this excellent xkcd comic:

H E L L O W E B A P P16

 https://www.xkcd.com/149/

sudo is the special secret “I’m the boss and do what I say” com-
mand (and is short for “superuser do”). For most commands
that affect your computer in a big way (for example, deleting
all your files, or installing a new program), your computer
will require you to put “sudo” in front of it, then require your
computer’s password, to really make sure that you are aware of
what you’re doing.

As a beginner, you’re not going to need to use sudo very much,
but as you continue along in your programming career, you’re
going to see references to this command.

Making, moving, and deleting full directories
We’ve been working with individual files so far, but not full
directories. The commands we’ve learned so far — touch
(create) mv (move) or cp (copy) for example — won’t just work
for directories.

L e a r n C o m m a n d L i n e 17

Creating directories with mkdir
mkdir (”make directory”) is the command you will use to
create a new directory. Try making an empty directory named
“test” in your current location with mkdir test:

Run ls after creating your directory to confirm it was made.

cd into your new test directory and, after running ls, you can see
that it’s empty.

Moving directories with mv
This one is just the same as before! Move your new test directo-
ry into another other directory with the command mv NAMEOF-
FILE NAMEOFDIRECTORY (exactly the same as before):

H E L L O W E B A P P18

Yay, nothing new to remember here. Let’s move it back into
our home directory, which would be mv test ../. Make sure
you’re “in” the directory where you moved your test folder.
Also, note that you can move things backwards using the same
../ notation we learned above for traversing our hard drive!

Let’s move our hello.txt into our new directory so it’s no longer
empty. Go back to your home directory (cd ..) and then move
the test directory into your currect folder with a “.” — so, mv
Music/test/ .

Try it out! We’ll talk more about the single dot in a few pages.

Cool, now we have our test directory with our test file in it!
What happens if we try to delete the whole thing?

L e a r n C o m m a n d L i n e 19

Deleting directories with rm -r
What’s that -r thing? New concept alert!

Every command we’ve learned so far has options (or “flags”)
we can add along to the command. We’ll explore using a flag
for the first time by deleting our test directory.

First off, try to use our delete command (rm THINGTODELETE)
with your test directory. What happens?

Can’t delete the directory because it’s a directory! What to do?

When we add -r to our command, we’re telling it to delete
recursively — so, delete not only the directory but also every-
thing inside it. Without the -r flag, the delete fails because the
command line doesn’t know if you want to delete everything in
the folder. With -r, you’re basically saying, “Have at it, delete
EVERYTHING” in the directory.

(Fun fact! You might have seen scary things about the com-
mand rm -rf /. You know the -r flag, and you can chain
together many different flags — so here, the -f flag is added
too, which means “force.” The thing that the command is de-
leting is /, which is the top level directory of your entire hard
drive (which is, usually, your entire computer). So, in english,
this command is “Force remove everything, including directo-
ries and all the files, for my entire hard drive.” Scary! Back in
the day, you could mess up your computer with just six charac-
ters in your command line. Now (yay!), computer makes have
become wise to this and this command will not work. No
need to worry about accidentally typing it and wiping your
hard-drive!)

H E L L O W E B A P P20

How do I move things into
my current directory?

Indicating the current directory with .
Once you’ve gotten comfortable with traversing your hard
drive using only commands, you might want to “enter” a
directory and then move a file into that directory. So far, we’ve
only covered moving things from the directory that we’re in,
but we can also move things from elsewhere into our current
“location”!

For example, this command: “mv ../test.txt .”. In english,
this is saying “Move test.txt, which is the previous directory,
into this current directory.” That single dot at the end means
“current location.” Pretty cool!

Using wildcards
When specifying a file, you don’t have to be limited to just
one — you can use the “*” wildcard to grab multiple files. That
sounds confusing. It’s easier explained with an example! Say
you wanted to move all .txt files in a directory into another
directory. This would be the command you’d use:
 mv *.txt NEWDIRNAME:

Nifty!

L e a r n C o m m a n d L i n e 21

Wait, something went
wrong.

My command didn’t work!
Make sure that you’re in the correct directory for what you
want to run. Often, I’ll try to copy a file but forget what directo-
ry it is in. Run ls (the command to “list” all files in a directory)
to confirm that you’re in the right directory with the file you
need.

I’m stuck and I don’t know how to
get back to the command line!
Certain commands will replace your current command line
window with another interface. Or, maybe you’ve started
writing out some giant command (mv thisfile.txt to/an-
other/file/folder/wait/not/that/one) and you don’t want to
backspace allllll the way back to the start of the line.

Control-C (pressing both buttons at once) is your friend in sit-
uations like this. It’s basically an escape/start over command
that works in most situations to start over. (This is sometimes
written as ^C, because shortcuts are handy.) Note that we’re
talking the “Control” button here, not “Command!

(That didn’t work? Try pressing “q”, “ESC”, or “Control-D.” I
know this sounds very unspecific but that’s what I do when I
get into a weird screen that I don’t know how to get out of — I
mash all the escape commands I can remember. Learn from
me, a developer with multiple years of experience!)

H E L L O W E B A P P22

I can’t see files that start with a dot!
When you’re looking in your current directory with ls, it’s
actually showing only visible files. Add the flag -a (“all”) to your
command to see every file, including hidden files that start
with a “.”

Woah, there are a lot more files in this directory than
what it seemed.

Sneaky hidden files! Here’s where the command line shines:
It’s really easy to add the -a flag to see all files in a directory,
whereas in Finder, it’s a lot more difficult to see those hidden
files.

What’s even sneakier, is adding a -l to the command will show
you the files as a list, including the timestamps, and owner
information, and other useful things. But because it’s a list,
instead of having three or four or five colours, it’s always just
one list of file names

What’s even sneakier, is adding a -l to the command will show
you the files as a list, including the timestamps, and owner
information, and other useful things. But because it’s a list,

L e a r n C o m m a n d L i n e 23

instead of having three or four or five colours, it’s always just
one list of file names

Wow, this is a lot! You can
do it.
Right? The command line is a really powerful tool. We just
skimmed the surface of what you can do, but hopefully cov-
ered just enough so you feel comfortable poking around and
learning a bit more.

With the command line, you’re speaking directly to your
computer — no need for a graphical user interface to translate
for you. And as you go through and learn programming, you’ll
find out how much you can do from one little window.

I hope this was a fun introduction for you! Feel free to ask any
questions you have on the Hello Web App discussion forum:
https://discuss.hellowebapp.com

If you’re looking for the next step, I invite you to check out
Hello Web App, my book and course teaching web app develop-
ment with Django. Even if you’re new to programming and the
command line, the book is pretty easy to just follow along, try
things out, and learn more by doing. Check it out here: https://
hellowebbooks.com/learn-django

Thanks friends, and good luck on your programming journey!

-Tracy

https://discuss.hellowebapp.com
https://hellowebbooks.com/learn-django
https://hellowebbooks.com/learn-django

the command prompt
this is where you type!

list files in current directory
usually typed all by itself

change directory
cd DIRECTORY_NAME

cd backwards a directory
cd ..

create a new file
touch FILENAME.FORMAT

move file
mv FILENAME NEWLOCATION

copy file
cp FILENAME NEWFILENAME

remove file
rm FILENAME

remove directory
rm -r DIRECTORYNAME

superuser do
typed at the start of the command to
assert that you’re the admin

make directory
mkdir DIRECTORYNAME

print working directory
show current working directory

- press tab to autocomplete

- press up to access previous
commands.

- “.” means “current directory”

- * is a wildcard character

twitter/instagram website

http://twitter.com/hellowebbooks
http://hellowebbooks.com

